Thứ Sáu, 4 tháng 11, 2016

Best memories I want you show me?

I had many memories that I want to show you but I decide to choose the happy things. It happen when I was in my university. At that time, I had bad previous semester, my CPA is 1.8 so I can’t have more D grade. I told my parent that everything was fine, but I was really nervous about my exam. In that semester I had to deal with hard subjects like math, physic, and philosophy if I failed I would be out of the University. I could imagine the bad thing happen to me If my parents know about it, everything would ended. I thought about it many times and then started action, I put my computer in a bag and got away from it. I went to university on time and listened to my professor carefully, written down everything I heard. I decided to go to library to learn because If I stayed at home I would use computer and play game. When first time I was in library, I was so sleepy and had a nice sleep. After this time I brought a wet cloth when I went to library. Each time I was sleepy I stood up, exercise and rubbed cloth on my face, I was active again and then keep up learning. It was not special things happen till I received my result at the end of semester. It’s so amazing, I scored four B grade and a C grade, with that point I can receive a scholarship but I failed at Physical Education exam. I was not bored at all because my GPA was higher than 2.5 so I could choose my favorite study to learn.

Thứ Ba, 18 tháng 10, 2016

An Introduction to Latent Semantic Analysis

1
Running head: INTRODUCTION TO LATENT SEMANTIC ANALYSIS
An Introduction to Latent Semantic Analysis
Thomas K Landauer
Department of Psychology
University of Colorado at Boulder,
Peter W. Foltz
Department of Psychology
New Mexico State University
Darrell Laham
Department of Psychology
University of Colorado at Boulder,
Landauer, T. K., Foltz, P. W., & Laham, D. (1998).
Introduction to Latent Semantic Analysis.
Discourse Processes, 25, 259-284.
Introduction to Latent Semantic Analysis 2
Abstract
Latent Semantic Analysis (LSA) is a theory and method for extracting and representing the
contextual-usage meaning of words by statistical computations applied to a large corpus of
text (Landauer and Dumais, 1997). The underlying idea is that the aggregate of all the word
contexts in which a given word does and does not appear provides a set of mutual
constraints that largely determines the similarity of meaning of words and sets of words to
each other. The adequacy of LSA’s reflection of human knowledge has been established in
a variety of ways. For example, its scores overlap those of humans on standard vocabulary
and subject matter tests; it mimics human word sorting and category judgments; it simulates
word–word and passage–word lexical priming data; and, as reported in 3 following articles
in this issue, it accurately estimates passage coherence, learnability of passages by
individual students, and the quality and quantity of knowledge contained in an essay.
Introduction to Latent Semantic Analysis 3
An Introduction to Latent Semantic Analysis
Research reported in the three articles that follow—Foltz, Kintsch & Landauer (1998/this
issue), Rehder, et al. (1998/this issue), and Wolfe, et al. (1998/this issue)—exploits a new
theory of knowledge induction and representation (Landauer and Dumais, 1996, 1997) that
provides a method for determining the similarity of meaning of words and passages by
analysis of large text corpora. After processing a large sample of machine-readable
language, Latent Semantic Analysis (LSA) represents the words used in it, and any set of
these words—such as a sentence, paragraph, or essay—either taken from the original
corpus or new, as points in a very high (e.g. 50-1,500) dimensional “semantic space”.
LSA is closely related to neural net models, but is based on singular value decomposition, a
mathematical matrix decomposition technique closely akin to factor analysis that is
applicable to text corpora approaching the volume of relevant language experienced by
people.
Word and passage meaning representations derived by LSA have been found
capable of simulating a variety of human cognitive phenomena, ranging from
developmental acquisition of recognition vocabulary to word-categorization, sentence-word
semantic priming, discourse comprehension, and judgments of essay quality. Several of
these simulation results will be summarized briefly below, and additional applications will
be reported in detail in following articles by Peter Foltz, Walter Kintsch, Thomas
Landauer, and their colleagues. We will explain here what LSA is and describe what it
does.
LSA can be construed in two ways: (1) simply as a practical expedient for obtaining
approximate estimates of the contextual usage substitutability of words in larger text
segments, and of the kinds of—as yet incompletely specified— meaning similarities among
Introduction to Latent Semantic Analysis 4
words and text segments that such relations may reflect, or (2) as a model of the
computational processes and representations underlying substantial portions of the
acquisition and utilization of knowledge. We next sketch both views.
As a practical method for the characterization of word meaning, we know that LSA
produces measures of word-word, word-passage and passage-passage relations that are
well correlated with several human cognitive phenomena involving association or semantic
similarity. Empirical evidence of this will be reviewed shortly. The correlations
demonstrate close resemblance between what LSA extracts and the way peoples’
representations of meaning reflect what they have read and heard, as well as the way
human representation of meaning is reflected in the word choice of writers. As one
practical consequence of this correspondence, LSA allows us to closely approximate
human judgments of meaning similarity between words and to objectively predict the
consequences of overall word-based similarity between passages, estimates of which often
figure prominently in research on discourse processing.
It is important to note from the start that the similarity estimates derived by LSA are
not simple contiguity frequencies, co-occurrence counts, or correlations in usage, but
depend on a powerful mathematical analysis that is capable of correctly inferring much
deeper relations (thus the phrase “Latent Semantic”), and as a consequence are often much
better predictors of human meaning-based judgments and performance than are the surface
level contingencies that have long been rejected (or, as Burgess and Lund, 1996 and this
volume, show, unfairly maligned) by linguists as the basis of language phenomena.
LSA, as currently practiced, induces its representations of the meaning of words
and passages from analysis of text alone. None of its knowledge comes directly from
perceptual information about the physical world, from instinct, or from experiential
intercourse with bodily functions, feelings and intentions. Thus its representation of reality
is bound to be somewhat sterile and bloodless. However, it does take in descriptions and
verbal outcomes of all these juicy processes, and so far as writers have put such things into
Introduction to Latent Semantic Analysis 5
words, or that their words have reflected such matters unintentionally, LSA has at least
potential access to knowledge about them. The representations of passages that LSA forms
can be interpreted as abstractions of “episodes”, sometimes of episodes of purely verbal
content such as philosophical arguments, and sometimes episodes from real or imagined
life coded into verbal descriptions. Its representation of words, in turn, is intertwined with
and mutually interdependent with its knowledge of episodes. Thus while LSA’s potential
knowledge is surely imperfect, we believe it can offer a close enough approximation to
people’s knowledge to underwrite theories and tests of theories of cognition. (One might
consider LSA's maximal knowledge of the world to be analogous to a well-read nun’s
knowledge of sex, a level of knowledge often deemed a sufficient basis for advising the
young.)
However, LSA as currently practiced has some additional limitations. It makes no
use of word order, thus of syntactic relations or logic, or of morphology. Remarkably, it
manages to extract correct reflections of passage and word meanings quite well without
these aids, but it must still be suspected of resulting incompleteness or likely error on some
occasions.
LSA differs from some statistical approaches discussed in other articles in this issue
and elsewhere in two significant respects. First, the input data "associations" from which
LSA induces representations are between unitary expressions of meaning—words and
complete meaningful utterances in which they occur—rather than between successive
words. That is, LSA uses as its initial data not just the summed contiguous pairwise (or
tuple-wise) co-occurrences of words but the detailed patterns of occurrences of very many
words over very large numbers of local meaning-bearing contexts, such as sentences or
paragraphs, treated as unitary wholes. Thus it skips over how the order of words produces
the meaning of a sentence to capture only how differences in word choice and differences
in passage meanings are related.
Introduction to Latent Semantic Analysis 6
Another way to think of this is that LSA represents the meaning of a word as a kind
of average of the meaning of all the passages in which it appears, and the meaning of a
passage as a kind of average of the meaning of all the words it contains. LSA's ability to
simultaneously—conjointly—derive representations of these two interrelated kinds of
meaning depends on an aspect of its mathematical machinery that is its second important
property. LSA assumes that the choice of dimensionality in which all of the local word-
context relations are simultaneously represented can be of great importance, and that
reducing the dimensionality (the number parameters by which a word or passage is
described) of the observed data from the number of initial contexts to a much smaller—but
still large—number will often produce much better approximations to human cognitive
relations. It is this dimensionality reduction step, the combining of surface information into
a deeper abstraction, that captures the mutual implications of words and passages. Thus, an
important component of applying the technique is finding the optimal dimensionality for the
final representation. A possible interpretation of this step, in terms more familiar to
researchers in psycholinguistics, is that the resulting dimensions of description are
analogous to the semantic features often postulated as the basis of word meaning, although
establishing concrete relations to mentalisticly interpretable features poses daunting
technical and conceptual problems and has not yet been much attempted.
Finally, LSA, unlike many other methods, employs a preprocessing step in which
the overall distribution of a word over its usage contexts, independent of its correlations
with other words, is first taken into account; pragmatically, this step improves LSA’s
results considerably.
However, as mentioned previously, there is another, quite different way to think
about LSA. Landauer and Dumais (1997) have proposed that LSA constitutes a
fundamental computational theory of the acquisition and representation of knowledge. They
maintain that its underlying mechanism can account for a long-standing and important
mystery, the inductive property of learning by which people acquire much more knowledge
Introduction to Latent Semantic Analysis 7
than appears to be available in experience, the infamous problem of the "insufficiency of
evidence" or "poverty of the stimulus." The LSA mechanism that solves the problem
consists simply of accommodating a very large number of local co-occurrence relations
(between the right kinds of observational units) simultaneously in a space of the right
dimensionality. Hypothetically, the optimal space for the reconstruction has the same
dimensionality as the source that generates discourse, that is, the human speaker or writer's
semantic space. Naturally observed surface co-occurrences between words and contexts
have as many defining dimensions as there are words or contexts. To approximate a source
space with fewer dimensions, the analyst, either human or LSA, must extract information
about how objects can be well defined by a smaller set of common dimensions. This can
best be accomplished by an analysis that accommodates all of the pairwise observational
data in a space of the same lower dimensionality as the source. LSA does this by a matrix
decomposition performed by a computer algorithm, an analysis that captures much indirect
information contained in the myriad constraints, structural relations and mutual entailments
latent in the local observations available to experience.
The principal support for these claims has come from using LSA to derive measures
of the similarity of meaning of words from text. The results have shown that: (1) the
meaning similarities so derived closely match those of humans, (2) LSA's rate of
acquisition of such knowledge from text approximates that of humans, and (3) these
accomplishments depend strongly on the dimensionality of the representation. In this and
other ways, LSA performs a powerful and, by the human-comparison standard, correct
induction of knowledge. Using representations so derived, it simulates a variety of other
cognitive phenomena that depend on word and passage meaning.
The case for or against LSA's psychological reality is certainly still open. However,
especially in view of the success to date of LSA and related models, it can not be settled by
theoretical presuppositions about the nature of mental processes (such as the presumption,
popular in some quarters, that the statistics of experience are an insufficient source of
Introduction to Latent Semantic Analysis 8
knowledge.) Thus, we propose to researchers in discourse processing not only that they
use LSA to expedite their investigations, but that they join in the project of testing,
developing and exploring its fundamental theoretical implications and limits.
What is LSA?
LSA is a fully automatic mathematical/statistical technique for extracting and inferring
relations of expected contextual usage of words in passages of discourse. It is not a
traditional natural language processing or artificial intelligence program; it uses no humanly
constructed dictionaries, knowledge bases, semantic networks, grammars, syntactic
parsers, or morphologies, or the like, and takes as its input only raw text parsed into words
defined as unique character strings and separated into meaningful passages or samples such
as sentences or paragraphs.
The first step is to represent the text as a matrix in which each row stands for a
unique word and each column stands for a text passage or other context. Each cell contains
the frequency with which the word of its row appears in the passage denoted by its
column. Next, the cell entries are subjected to a preliminary transformation, whose details
we will describe later, in which each cell frequency is weighted by a function that expresses
both the word’s importance in the particular passage and the degree to which the word type
carries information in the domain of discourse in general.
Next, LSA applies singular value decomposition (SVD) to the matrix. This is a
form of factor analysis, or more properly the mathematical generalization of which factor
analysis is a special case. In SVD, a rectangular matrix is decomposed into the product of
three other matrices. One component matrix describes the original row entities as vectors of
derived orthogonal factor values, another describes the original column entities in the same
way, and the third is a diagonal matrix containing scaling values such that when the three
components are matrix-multiplied, the original matrix is reconstructed. There is a
mathematical proof that any matrix can be so decomposed perfectly, using no more factors
Introduction to Latent Semantic Analysis 9
than the smallest dimension of the original matrix. When fewer than the necessary number
of factors are used, the reconstructed matrix is a least-squares best fit. One can reduce the
dimensionality of the solution simply by deleting coefficients in the diagonal matrix,
ordinarily starting with the smallest. (In practice, for computational reasons, for very large
corpora only a limited number of dimensions—currently a few thousand— can be
constructed.)
Here is a small example that gives the flavor of the analysis and demonstrates what
the technique accomplishes. This example uses as text passages the titles of nine technical
memoranda, five about human computer interaction (HCI), and four about mathematical
graph theory, topics that are conceptually rather disjoint. Thus the original matrix has nine
columns, and we have given it 12 rows, each corresponding to a content word used in at
least two of the titles. The titles, with the extracted terms italicized, and the corresponding
word-by-document matrix is shown in Figure 1. 1 We will discuss the highlighted parts
of the tables in due course.
The linear decomposition is shown next (Figure 2); except for rounding errors, its
multiplication perfectly reconstructs the original as illustrated.
Next we show a reconstruction based on just two dimensions (Figure 3) that
approximates the original matrix. This uses vector elements only from the first two,
shaded, columns of the three matrices shown in the previous figure (which is equivalent to
setting all but the highest two values in S to zero).
Each value in this new representation has been computed as a linear combination of
values on the two retained dimensions, which in turn were computed as linear
combinations of the original cell values. Note, therefore, that if we were to change the entry
in any one cell of the original, the values in the reconstruction with reduced dimensions
1 This example has been used in several previous publications (e.g. Deerwester et al., 1990;
Landauer & Dumais, in press).
Introduction to Latent Semantic Analysis 10
might be changed everywhere; this is the mathematical sense in which LSA performs
inference or induction.
Example of text data: Titles of Some Technical Memos
c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
m1:  The generation of random, binary, ordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey
X { } =
c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1
 (human.user) = -.38
r (human.minors) = -.29
Figure 1. A word by context matrix, X, formed from the titles of five articles about
human-computer interaction and four about graph theory. Cell entries are the
number of times that a word (rows) appeared in a title (columns) for words that
appeared in at least two titles.
Introduction to Latent Semantic Analysis 11
The dimension reduction step has collapsed the component matrices in such a way
that words that occurred in some contexts now appear with greater or lesser estimated
frequency, and some that did not appear originally now do appear, at least fractionally.
X W S P { } = { }{ }{ } '
W { } =
0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41
0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11
0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49
0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01
0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27
0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05
0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05
0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17
0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58
0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23
0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23
0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18
S { } =
3.34
2.54
2.35
1.64
1.50
1.31
0.85
0.56
0.36
P { } =
0.20 0.61 0.46 0.54 0.28 0.00 0.01 0.02 0.08
-0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53
0.11 -0.50 0.21 0.57 -0.51 0.10 0.19 0.25 0.08
-0.95 -0.03 0.04 0.27 0.15 0.02 0.02 0.01 -0.03
0.05 -0.21 0.38 -0.21 0.33 0.39 0.35 0.15 -0.60
-0.08 -0.26 0.72 -0.37 0.03 -0.30 -0.21 0.00 0.36
0.18 -0.43 -0.24 0.26 0.67 -0.34 -0.15 0.25 0.04
-0.01 0.05 0.01 -0.02 -0.06 0.45 -0.76 0.45 -0.07
-0.06 0.24 0.02 -0.08 -0.26 -0.62 0.02 0.52 -0.45
Figure 2. Complete SVD of matrix in Figure 1.
Introduction to Latent Semantic Analysis 12
ˆ
X
{ } =
c1 c2 c3 c4 c5 m1 m2 m3 m4
human 0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09
interface 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12
user 0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19
system 0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
response 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11
survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
minors -0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 0.62
r (human.user) = .94
 (human.minors) = -.83
Figure 3. Two dimensional reconstruction of original matrix shown in Fig. 1 based
on shaded columns and rows from SVD as shown in Fig. 2. Comparing shaded
and boxed rows and cells of Figs. 1 and 3 illustrates how LSA induces similarity
relations by changing estimated entries up or down to accommodate mutual
constraints in the data.
Look at the two shaded cells for survey and trees in column m4. The word tree did not
appear in this graph theory title. But because m4 did contain graph and minors, the zero
entry for tree has been replaced with 0.66, which can be viewed as an estimate of how
many times it would occur in each of an infinite sample of titles containing graph and
minors . By contrast, the value 1.00 for survey , which appeared once in m4, has been
replaced by 0.42 reflecting the fact that it is unexpected in this context and should be
counted as unimportant in characterizing the passage. Very roughly and
anthropomorphically, in constructing the reduced dimensional representation, SVD, with
only values along two orthogonal dimensions to go on, has to estimate what words actually
appear in each context by using only the information it has extracted. It does that by saying
the following:
Introduction to Latent Semantic Analysis 13
This text segment is best described as having so much of abstract concept one and
so much of abstract concept two, and this word has so much of concept one and so
much of concept two, and combining those two pieces of information (by vector
arithmetic), my best guess is that word X actually appeared 0.6 times in context Y.
Now let us consider what such changes may do to the imputed relations between
words or between multi-word textual passages. For two examples of word-word relations,
compare the shaded and/or boxed rows for the words human , user and minors (in this
context, mino is a technical term from graph theory) in the original and in the two-
dimensionally reconstructed matrices (Figures 1 and 3). In the original, human never
appears in the same passage with either user or minors —they have no co-occurrences,
contiguities or “associations” as often construed. The correlations (using Spearman r to
facilitate familiar interpretation) are -.38 between human and user, and a slightly higher -
.29 between human and minors . However, in the reconstructed two-dimensional
approximation, because of their indirect relations, both have been greatly altered: the
human-user correlation has gone up to .94, the human-minors correlation down to -.83.
Thus, because the terms human and user occur in contexts of similar meaning—even
though never in the same passage—the reduced dimension solution represents them as
more similar, while the opposite is true of human and minors .
To examine what the dimension reduction has done to relations between titles, we
computed the intercorrelations between each title and all the others, first based on the raw
co-occurrence data, then on the corresponding vectors representing titles in the two-
dimensional reconstruction; see Figure 4.
In the raw co-occurrence data, correlations among the 5 human-computer
interaction titles were generally low, even though all the papers were ostensibly about quite
similar topics; half the  s were zero, three were negative, two were moderately positive,
and the average was only .02. The correlations among the four graph theory papers were
mixed, with a moderate mean  of 0.44. Correlations between the HCI and graph theory
papers averaged only a modest -.30 despite the minimal conceptual overlap of the two
topics.
Introduction to Latent Semantic Analysis 14
Correlations between titles in raw data:
c1 c2 c3 c4 c5 m1 m2 m3
c2 -0.19
c3 0.00 0.00
c4 0.00 0.00 0.47
c5 -0.33 0.58 0.00 -0.31
m1 -0.17 -0.30 -0.21 -0.16 -0.17
m2 -0.26 -0.45 -0.32 -0.24 -0.26 0.67
m3 -0.33 -0.58 -0.41 -0.31 -0.33 0.52 0.77
m4 -0.33 -0.19 -0.41 -0.31 -0.33 -0.17 0.26 0.56
0.02
-0.30 0.44
Correlations in two dimensional space:
c2 0.91
c3 1.00 0.91
c4 1.00 0.88 1.00
c5 0.85 0.99 0.85 0.81
m1 -0.85 -0.56 -0.85 -0.88 -0.45
m2 -0.85 -0.56 -0.85 -0.88 -0.44 1.00
m3 -0.85 -0.56 -0.85 -0.88 -0.44 1.00 1.00
m4 -0.81 -0.50 -0.81 -0.84 -0.37 1.00 1.00 1.00
0.92
-0.72 1.00
Figure 4. Intercorrelations among vectors representing titles (averages of vectors of
the words they contain) in the original full dimensional source data of Fig. 1 and in
the two-dimensional reconstruction of Fig. 3 illustrate how LSA induces passage
similarity.
In the two dimensional reconstruction the topical groupings are much clearer. Most
dramatically, the average  between HCI titles increases from .02 to .92. This happened,
not because the HCI titles were generally similar to each other in the raw data, which they
were not, but because they contrasted with the non-HCI titles in the same ways. Similarly,
the correlations among the graph theory titles were re-estimated to be all 1.00, and those
between the two classes of topic were now strongly negative, mean  = -.72.
Thus, SVD has performed a number of reasonable inductions; it has inferred what
the true pattern of occurrences and relations must be for the words in titles if all the original
Introduction to Latent Semantic Analysis 15
data are to be accommodated in two dimensions. In this case, the inferences appear to be
intuitively sensible. Note that much of the information that LSA used to infer relations
among words and passages is in data about passages in which particular words did not
occur. Indeed, Landauer and Dumais (1997) found that in LSA simulations of schoolchild
word knowledge acquisition, about three-fourths of the gain in total comprehension
vocabulary that results from reading a paragraph is indirectly inferred knowledge about
words not in the paragraph at all, a result that offers an explanation of children's otherwise
inexplicably rapid growth of vocabulary. A rough analogy of how this can happen is as
follows. Read the following sentence:
John is Bob's father and Mary is Ann's mother .
Now read this one:
Mary is Bob's mother.
Because of the relations between the words mother , father , son , daughter , brother and
sister that you already knew, adding the second sentence probably tended to make you
think that that Bob and Ann were brother and sister, Ann the daughter of John, John the
father of Ann, and Bob the son of Mary, even though none of these relations is explicitly
expressed (and none follow necessarily from the presumed formal rules of English kinship
naming.) The relationships inferred by LSA are also not logically defined, nor are they
assumed to be consciously rationalizable as these could be. Instead, they are relations only
of similarity—or of context sensitive similarity—but they nevertheless have mutual
entailments of the same general nature, and also give rise to fuzzy indirect inferences that
may be weak or strong and logically right or wrong.
Why, and under what circumstances should reducing the dimensionality of
representation be beneficial; when, in general, will such inferences be better than the
original first-order data? We hypothesize that one such case is when the original data are
Introduction to Latent Semantic Analysis 16
generated from a source of the same dimensionality and general structure as the
reconstruction. Suppose, for example, that speakers or writers generate paragraphs by
choosing words from a k-dimensional space in such a way that words in the same
paragraph tend to be selected from nearby locations. If listeners or readers try to infer the
similarity of meaning from these data, they will do better if they reconstruct the full set of
relations in the same number of dimensions as the source. Among other things, given the
right analysis, this will allow the system to infer that two words from nearby locations in
semantic space have similar meanings even though they are never used in the same
passage, or that they have quite different meanings even though they often occur in the
same utterances.
The number of dimensions retained in LSA is an empirical issue. Because the
underlying principle is that the original data should notbe perfectly regenerated but, rather,
an optimal dimensionality should be found that will cause correct induction of underlying
relations, the customary factor-analytic approach of choosing a dimensionality that most
parsimoniously represent the true variance of the original data is not appropriate. Instead
some external criterion of validity is sought, such as the performance on a synonym test or
prediction of the missing words in passages if some portion are deleted in forming the
initial matrix. (See Britton & Sorrells, this issue, for another approach to determining the
correct dimensions for representing knowledge.)
Finally, the measure of similarity computed in the reduced dimensional space is
usually, but not always, the cosine between vectors. Empirically, this measure tends to
work well, and there are some weak theoretical grounds for preferring it (see Landauer &
Dumais, 1997). Sometimes we have found the additional use of the length of LSA vectors,
which reflects how much was said about a topic rather than how central the discourse was
to the topic, to be useful as well (see Rehder et al., this volume).
Introduction to Latent Semantic Analysis 17
Additional detail about LSA
As mentioned, one additional part of the analysis, the data preprocessing transformation,
needs to be described more fully. Before the SVD is computed, it is customary in LSA to
subject the data in the raw word-by-context matrix to a two-part transformation. First, the
word frequency (+ 1) in each cell is converted to its log. Second, the information-theoretic
measure, entropy , of each word is computed as - p log p over all entries in its row, and
each cell entry then divided by the row entropy value. The effect of this transformation is to
weight each word-type occurrence directly by an estimate of its importance in the passage
and inversely with the degree to which knowing that a word occurs provides information
about which passage it appeared in. Transforms of this or similar kinds have long been
known to provide marked improvement in information retrieval (Harman, 1986), and have
been found important in several applications of LSA. The are probably most important for
correctly representing a passage as a combination of the words it contains because they
emphasize specific meaning-bearing words.
Readers are referred to more complete treatments for more on the underlying
mathematical, computational, software and application aspects of LSA (see Berry, 1992 ;
Berry, Dumais & O’Brien, 1995; Deerwester, et al., 1990; Landauer & Dumais, 1997;
http://superbook.bellcore.com/~std/LSI.papers.html). On the World Wide Web site
http://LSA.colorado.edu/, investigators can enter words or passages and obtain LSA based
word or passage vectors, similarities between words and words, words and passages, and
passages and passages, and do a few other related operations and try several prototype
applications . The site offers results based on several different training corpora, such as an
encyclopedia, a grade- and topic-partitioned collection of schoolchild reading, newspaper
text in several languages, introductory psychology textbooks, and a small domain-specific
corpus of text about the heart. To carry out LSA research based on their own training
corpora, investigators will need to consult the more detailed sources (see the Appendix).
Researchers should bear in mind that the LSA values given are based on samples of data
Introduction to Latent Semantic Analysis 18
and are necessarily noisy. Therefore, studies using them require the use of replicate cases
and statistical treatment in a manner similar to human data.
LSA’s Ability to Model Human Conceptual Knowledge
How well does LSA actually work as a representational model and measure of human
verbal concepts? Its performance has been assessed more or less rigorously in several
ways. We give eight examples:
(1) LSA was assessed as a predictor of query-document topic similarity judgments.
(2) LSA was assessed as a simulation of agreed upon word-word relations and of human
vocabulary test synonym judgments.
(3) LSA was assessed as a simulation of human choices on subject-matter multiple choice
tests.
(4) LSA was assessed as a predictor of text coherence and resulting comprehension.
(5) LSA was assessed as a simulation of word-word and passage-word relations found in
lexical priming experiments.
(6) LSA was assessed as a predictor of subjective ratings of text properties, i.e. grades
assigned to essays.
(7) LSA was assessed as a predictor of appropriate matches of instructional text to learners.
(8) LSA has been used with good results to mimic synonym, antonym, singular-plural and
compound-component word relations, aspects of some classical word sorting studies, to
simulate aspects of imputed human representation of single digits, and, in pilot studies, to
replicate semantic categorical clusterings of words found in certain neuropsychological
deficits (Laham, 1997b).
Kintsch (1998) has also used LSA derived meaning representations to demonstrate their
possible role in construction-integration-theoretic accounts of sentence comprehension,
Introduction to Latent Semantic Analysis 19
metaphor and context effects in decision making. We will take space here to review only
some of the most systematic and pertinent of these results.
LSA and information retrieval
J. R. Anderson (1990) has called attention to the analogy between information retrieval and
human semantic memory processes. One way of expressing their commonality is to think
of a searcher as having in mind a certain meaning, which he or she expresses in words, and
the system as trying to find a text with the same meaning. Success, then, depends on the
system representing query and text meaning in a manner that correctly reflects their
similarity for the human. Latent Semantic Indexing (LSI; LSA’s alias in this application)
does this better than systems that depend on literal matches between terms in queries and
documents. Its superiority can often be traced to its ability to correctly match queries to
(and only to) documents of similar topical meaning when query and document use different
words. In the text–processing problem to which it was first applied, automatic matching of
information requests to document abstracts, SVD provides a significant improvement over
prior methods. In this application, the text of the document database is first represented as a
matrix of terms by documents (documents are usually represented by a surrogate such as a
title, abstract and/or keyword list) and subjected to SVD, and each word and document is
represented as a reduced dimensionality vector, usually with 50-400 dimensions. A query
is represented as a “pseudo-document” a weighted average of the vectors of the words it
contains. (A document vector in the SVD solution is also a weighted average of the vectors
of words it contains, and a word vector a weighted average of vectors of the documents in
which it appears.)
The first tests of LSI were against standard collections of documents for which
representative queries have been obtained and knowledgeable humans have more or less
exhaustively examined the whole database and judged which abstracts are and are not
relevant to the topic described in each query statement. In these standard collections LSI's
Introduction to Latent Semantic Analysis 20
performance ranged from just equivalent to the best prior methods up to about 30% better.
In a recent project sponsored by the National Institute of Standards and Technology, LSI
was compared with a large number of other research prototypes and commercial retrieval
schemes. Direct quantitative comparisons among the many systems were somewhat
muddied by the use of varying amounts of preprocessing—things like getting rid of
typographical errors, identifying proper nouns as special, differences in stop lists, and the
amount of tuning that systems were given before the final test runs. Nevertheless, the
results appeared to be quite similar to earlier ones. Compared to the standard vector
method (essentially LSI without dimension reductions) ceteris paribus LSI was a 16%
improvement (Dumais, 1994). LSI has also been used successfully to match reviewers
with papers to be reviewed based on samples of the reviewers’ own papers (Dumais &
Nielsen, 1992), and to select papers for researchers to read based on other papers they have
liked (Foltz and Dumais, 1992).
LSA and synonym tests
It is claimed that LSA, on average, represents words of similar meaning in similar ways.
When one compares words with similar vectors as derived from large text corpora, the
claim is largely but not entirely fulfilled at an intuitive level. Most very near neighbors (the
cosine defining a near neighbor is a relative value that depends on the training database and
the number of dimensions) appear closely related in some manner. In one scaling (an
LSA/SVD analysis) of an encyclopedia, “physician,” “patient,” and “bedside” were all
close to one another, cos > .5. In a sample of triples from a synonym and antonym
dictionary, both synonym and antonym pairs had cosines of about .18, more than 12 times
as large as between unrelated words from the same set. A sample of singular-plural pairs
showed somewhat greater similarity than the synonyms and antonyms, and compound
words were similar to their component words to about the same degree, more so if rated
analyzable.
Introduction to Latent Semantic Analysis 21
Nonetheless, the relationship between some close neighbors in LSA space can
occasionally be mysterious (e.g., “verbally” and “sadomasochism” with a cosine of .8
from the encyclopedia space), and some pairs that should be close are not. It's impossible
to say exactly why these oddities occur, but it is plausible that some words that have more
than one contextual meaning receive a sort of average high-dimensional placement that out
of context signifies nothing, and that many words are sampled too thinly to get well placed.
It must be born in mind that most of the training corpora used to date correspond in size
approximately to the printed word exposure (only) of a single average 9th grade student,
and individual humans also have frequent oddities in their understanding of particular
words. (Investigators who use LSA vectors should keep these factors in mind: the
similarities should be expected to reflect human similarities only when averaged over many
word or passages pairs of a particular type and when compared to averages across a
number of people; they will not always give sensible results when applied to the particular
words in a particular sentence.) It's also likely, of course, that LSA’s "bag of words"
method, which ignores all syntactical, logical and nonlinguistic pragmatic entailments,
sometimes misses meaning or gets it scrambled.
To objectively measure how well, compared to people, LSA captures synonymy,
LSA's knowledge of synonyms was assessed with a standard vocabulary test. The 80 item
test was taken from retired versions of the Educational Testing Service (ETS) Test of
English as a Foreign Language (TOEFL: for which we are indebted to Larry Frase and
ETS). To make these comparisons, LSA was trained by running the SVD analysis on a
large corpus of representative English. In various studies, collections of newspaper text
from the Associated Press news wire and Grolier's Academic American Encyclopedia (a
work intended for students), and a representative collection of children’s reading 2 have
2 We thank Stephen Ivens and Touchstone Applied Science Associates (TASA) of Brewster,
New York for providing this valuable resource. The corpus, which was used in the production of
The EducatorÕs Word Frequency Guide (Zeno, Ivens, Millard, & Duvvuri, 1995), consists of
representative random samples of text of all kinds read by students in each grade through first
year of college in the United States. In the machine-readable form in which we received it,
Introduction to Latent Semantic Analysis 22
been used. In one experiment, an SVD was performed on text segments consisting of 500
characters or less (on average 73 words, about a paragraph’s worth) taken from beginning
portions of each of 30,473 articles in the encyclopedia, a total of 4.5 million words of text,
roughly equivalent to what a child would have read by the end of eighth grade. This
resulted in a vector for each of 60 thousand words.
The TOEFL vocabulary test consists of items in which the question part is usually a
single word, and there are four alternative answers, usually single words, from which the
test taker is supposed to choose the one most similar in meaning. To simulate human
performance, the cosine between the question word and each alternative was calculated,
and the LSA model chose the alternative closest to the stem. For six test items for which the
model had never met either the stem word and/or the correct alternative, it guessed with
probability .25. Scored this way, LSA got 65% correct, identical to the average score of a
large sample of students applying for college entrance in the United States from non-
English speaking countries.
The detailed pattern of errors of LSA was also compared to that of students. For
each question a product-moment correlation coefficient was computed between (i) the
cosine of the stem and each alternative and (j) the proportion of guesses for each alternative
for a large sample of students (n > 1,000 for every test item). The average correlation
across the 80 items was 0.70. Excluding the correct alternative, the average correlation
was .44. These correlations may be thought of as between one test-taker (LSA) and group
norms, which would also be much less than perfect for humans. When LSA chose
wrongly and most students chose correctly, it sometimes appeared to be because LSA is
more sensitive to contextual or paradigmatic associations and less to contrastive semantic or
syntagmatic features. For example, LSA slightly preferred “nurse” (cos = .47) to “doctor”
(cos = .41) as an associate for “physician.”
thecorpus contains approximately 11 million word tokens of text. It is one of the corpora on
which LSA vectors and text similarity measures available through our Web siteÑ
http://LSA.colorado.eduÑare based.
Introduction to Latent Semantic Analysis 23
To assess the role of dimension reduction, the number of dimensions was varied
from 2 to 1,032 (the largest number for which SVD was computationally feasible.) On log-
linear coordinates, the TOEFL test results showed a very sharp and highly significant peak
(Figure 5). Corrected for guessing by the standard formula ((correct - chance)/(1-
chance)), LSA got 52.7% correct with 300 and 325 dimensions, 13.5% correct with just
two or three dimensions. When there was no dimension reduction at all (equivalent to
choosing correct answers by the correlation of transformed co-occurrence frequencies of
Figure 5. The effect of number of dimensions in an LSA corpus-based
representation of meaning on performance on a synonym test (from ETS Test of
English as a Foreign Language). The measure is the proportion of 80 multiple-
choice items after standard correction for guessing. The point for the highest
dimensionality is equivalent to a first-order co-occurrence correlation.
words over encyclopedia passages), just 15.8%. At optimal dimensionality, LSA chose
approximately three times as many right answers as would be obtained by ordinary first-
order correlations over the input, even after a transformation that greatly improves the
Introduction to Latent Semantic Analysis 24
relation. This demonstrates conclusively that the LSA dimension reduction technique
captures much more than mere co-occurrence (simply choosing the alternative that co-
occurs with the stem in the largest number of corpus paragraphs gets only 11% right when
corrected for guessing). More importantly for our argument, it implies that indirect
associations or structural relations induced by analysis of the whole corpus are involved in
LSA’s success with individual words. Thus, correct representation of any one word
depends on the simultaneous correct representation of many, perhaps all other words.
As mentioned earlier, Landauer and Dumais (1997) also estimated, by a different
method, the relative direct and indirect effects of adding a new paragraph to LSA’s
“experience”. For example, at a point in LSA’s learning roughly corresponding to the
amount of text read by late primary school, an imaginary test of all words in the language—
the model’s imputed total recognition vocabulary—gains about three times as much
knowledge about words not in the new paragraph as about words actually contained in the
paragraph.
Landauer and Dumais (1997) also found that the rate of gain in vocabulary by LSA
was approximately equal to the rate of gain of “known”, as compared to morphologically
inferred, words empirically estimated by Anglin (1995) and others for primary school
children.
Simulating word sorting and relatedness judgments
Recently, Laham and Landauer explored the relation between LSA and human lexical
semantic representations further by simulating a classic word sorting study by Anglin
(1970). In Anglin’s experiments third and fourth grade children and adults were given sets
of selected words to sort by meaning into as many piles as they wished. The word sets
contained subsets of nouns, verbs, prepositions and adjectives, and within each subset
there were words taken from common conceptual hierarchies, such as boy, girl, horse,
flower, among which clustering could reveal the participant’s tendency to use abstract
Introduction to Latent Semantic Analysis 25
versus concrete similarity relations. Anglin measured the semantic similarity of every pair
of words by the proportion of subjects who put them in the same pile. He found that parts
of speech clustered moderately in both child and adult sets, and, confirming the hypothesis
behind the study, that adults showed more evidence of use of abstract categories than did
children.
Laham and Landauer measured the similarity between the same word pairs by
cosines based on 5 grade-partitioned scalings of samples of schoolchild reading—3rd, 6th,
9th, 12th grade and college. 3 For each scaling, the cosine between each word pair in the set
(20 words for 190 comparisons) was calculated. The overall correlation of the LSA
estimates and the grouped human data, for both child and adult, rose as the number of
documents included in the scaling rose. Using the third grade scaling, the correlation
between the LSA estimates and the child data was .50, with the adult data .35. Using the
college level scaling the correlation between LSA estimates and the child data was .61, with
adults .50. The correlation coefficients between LSA estimates and human data showed a
monotonic linear rise as the grade level (and number of documents known to LSA)
increased.
LSA exhibited differences in similarities across degrees of abstraction much like
those found by Anglin; for the third grade scaling, the average correlations in patterns
across means for the comparable levels within each part-of-speech class  = .80 with
children and  = .75 with adults, for the college level scaling  = .90 with children and  =
.90 with adults . The correlation between the adult and child patterns was .95. The LSA
measure did not separate word classes nearly as strongly as did the human data, nor did it
as clearly distinguish within part-of-speech from between part-of-speech comparisons. For
the third grade scaling, the overall (N = 190) average cosine =.13, the average within part-
of-speech cosine (N = 41) = .15 and the average between part-of-speech cosine (N = 149)
= .13. The college level scaling showed stronger similarities within class with the overall
3 See previous footnote.
Introduction to Latent Semantic Analysis 26
average cosine =.19, the average within part-of-speech cosine = .23 and the average
between part-of-speech cosine = .17.
As in the vocabulary acquisition simulations, it appears that the relations obtained
from a corpus of small size relative to a typical adult’s cumulative language exposure
resemble children somewhat more than adults. LSA’s weak reflection of word class in this
rather small sample of data would appear to confirm the expectation that the lack of word
order information in its input data along with the use of fairly large passages as the context
units prevents it from inducing grammatical relations among words. (Wolfe et al.,
1998/this issue, reports further word sorting results. Also compare Burgess et al, 1998/this
issue.)
Simulating subject-matter knowledge
In three investigations by Foltz and by Laham and Landauer (Landauer, Foltz, & Laham,
1998) to be reported fully elsewhere, LSA has been trained on the text of introductory
psychology textbooks, then tested with multiple choice tests provided by the textbook
publishers. LSA performed well above chance in all cases, and in all cases did significantly
better on questions rated “easy” than on ones rated “difficult”, and on items classified as
“factual” than on ones classified as “conceptual” by their authors. On questions used in
university introductory psychology course exams given at New Mexico State University
and the University of Colorado, Boulder, LSA scored significantly worse than class
averages, but in every case did well enough to receive a passing grade according to the
class grading scheme.
In related work, Foltz, Britt and Perfetti (1996) used LSA to model the knowledge
structures of both expert and novice subjects who had read a large number of documents on
the history of the Panama canal. After reading the documents, subjects made judgments of
the relatedness of 120 pairs of concepts that were mentioned in the documents. Based on an
LSA scaling of the documents, the cosines between the concepts were used to estimate the
Introduction to Latent Semantic Analysis 27
relatedness of the concept pairs. The LSA predictions correlated significantly with the
subjects, with the correlation stronger to that of the experts in the domain (  = 0.41) than
that of the novices (  = 0.36). (Note again that two human ratings would also not correlated
perfectly.) An analysis of where LSA's predictions deviated greatly from that of the
humans indicated that LSA tended to underpredict more global or situational relationships
that were not directly discussed in the text but would be common historical knowledge of
any undergraduate. Thus in this case the limitation on LSA's predictions may simply be
due to training only on a small set of documents rather than on a larger set that would
capture a richer representation of history.
Simulating semantic priming
Landauer and Dumais (1997 ) report an analysis in which LSA was used to simulate a
lexical semantic priming study by Till, Mross and Kintsch (1988), in which people were
presented visually with one or two sentence passages that ended in an obviously
polysemous word. After varying onset delays, participants made lexical decisions about
words related to the homographic word or to the overall meaning of the sentence. In paired
passages, each homographic word’s meaning was biased in two different ways judged to
be related to two corresponding different target words. There were two additional target
words not in the passages or obviously related to the polysemous word but judged to be
related to the overall meaning or “situation model” that people would derive from the
passage. Here is an example of two passages and their associated target words, along with
a representative control word used to establish a baseline.
“The townspeople were amazed to find that all the buildings had collapsed except the mint.”
“Thinking of the amount of garlic in his dinner, the guest asked for a mint.”
Target words: money, candy, earthquake, breath
Unrelated control word: ground
Introduction to Latent Semantic Analysis 28
In the Till et al. study, target words related to both senses of the homographic words were
correctly responded to faster than unrelated control words if presented within 100 ms after
the homograph. If delayed by 300 ms, only the context-appropriate associate was primed.
At a one second delay, the so-called inference words were also primed. In the LSA
simulation, the cosines between the polysemic word and its two associates were computed
to mimic the expected initial priming. The cosine between the two associates of the
polysemic word and the sentence up to the last word preceding it were used to mimic
contextual disambiguation of the homographs. The cosine between the entire passages and
the inference words were computed to emulate the contextual comprehension effect on their
priming.
Table 1 shows the average results over all 27 passage pairs, with one of the above
example passages shown again to illustrate the conditions simulated. The values given are
the cosines between the word or passage and the target words. The pattern of LSA
similarity relations corresponds almost perfectly with the pattern of priming results; the
differences corresponding to differences observed in the priming data are all significant at p
< .001, and have effect sizes comparable to those in the priming study.
The import of this result is that LSA again emulated a human behavioral relation
between words and multi-word passages, and did so while representing passages simply as
the vector average of their contained words. (Steinhart, 1995, obtained similar results with
different words and passages.) It is surprising and important that such simple
representations of whole utterances, ones that ignore word order, sentence structure, and
non-linear word-word interactions, can correctly predict human behavior based on passage
meaning. However, this is the second example of this property—query-abstract and
abstract-abstract similarity results being the first—and there have subsequently been several
more. These findings begin to suggest that word choice alone has a much more dominant
role in the expression of meaning than has previously been credited (see Landauer, Laham
and Foltz, 1997).
Introduction to Latent Semantic Analysis 29
Table 1
LSA Simulation of Till, Mross, & Kintsch (1988) Priming Study.
Mint:
Money Candy Ground
.21 .20 .07
Thinking amount garlic dinner guest asked:
Money Candy
.15 .21
Ground
Earthquake Breath .15
.14 .21
Note. LSA = Latent Semantic Analysis.
Of course, LSA as currently constituted contains no model of the temporal
dynamics of discourse comprehension. To fit the temporal findings of the Till et al.
experiment one would need to assume that the combining (averaging) of word vectors into
a single vector to represent the whole passage takes about a second, and that partial
progress of the combining mechanism accounts for the order and times at which the
priming changes occur. We hope eventually to develop dynamic LSA-based models of the
word combining mechanism by which sentence and passage comprehension is
accomplished. Such models will presumably incorporate LSA word representations into
processes like those posited in Construction-Integration (Kintsch, 1988) or other spreading
activation theories. An example of such a model would be to first compute the vector of
each word, then the average vector for the two most similar words, and so forth. It seems
likely that such a model would prove too simple. However, the research strategy behind the
LSA effort would dictate trying the simplest models first and then complicating them, for
example in the direction of the full-blown CI construction and iterative constraint
Introduction to Latent Semantic Analysis 30
satisfaction mechanisms, or even to models including hierarchical syntactic structure
(presumably, automatically induced), only if and as found necessary.
Assigning holistic quality scores to essay test answers
In another set of studies to be published elsewhere by Landauer, Laham and Foltz (1998),
LSA has been used to assign holistic quality scores to written answers to essay questions.
Five different methods have been tried, all with good success. In all cases an LSA space
was first constructed based either on the instructional text read by students or on similar
text from other sources, plus the text of student essays. In Method 1, a sample of essays
was first graded by instructors, then the cosine (or other LSA-based similarity and quantity
measures, or both) between each ungraded essay and each pre-graded essay was
computed, and the new essay assigned the average of a small set of closely similar ones,
weighted by their similarity.
In Method 2, a pre-existing exemplary text on the assigned topic, one written by an
instructor or expert author, was used as a standard, and the student essay score was
computed as its LSA cosine with the standard. In the Method 3, the cosine between each
sentence of a standard text from which the students had presumably learned the material
being tested and each sentence of a student’s answer was first computed. The maximum
cosine for each source text component was found among the sentences of the student
essay, and these cumulated to form a total score. In a variant of the third method, Method 4
computed and cumulated the cosines between each sentence in a student's essay and a set
of sentences from the original text that the instructor thought were important.
In Method 5, only the essays themselves were used. The matrix of distances (1-
cosine) between all essays was "unfolded" to the single dimension that best reconstructed
all the distances, and the point of an essay along this dimension taken as the measure of its
quality. This assumes that the most important dimension of difference among a set of essay
exams on a given topic is their global quality.
Introduction to Latent Semantic Analysis 31
All five methods provided the basis of scores that correlated approximately as well
with expert assigned scores as such scores correlated with each other, sometimes slightly
less well, on average somewhat better. In one set of studies (Laham, 1997a), method one
was applied to a total of eight exams ranging in topic from heart anatomy and physiology,
through psychological concepts, to American history, current social issues and marketing
problems. A meta-analysis found that LSA correlated significantly better with individual
expert graders (from ETS or other professional organization or course instructors) than one
expert correlated with another.
Because these results show that human judgments about essay qualities are no more
reliable than LSA’s, they again suggest that the holistic semantic representation of a
passage relies primarily on word choice and surprisingly little on properties whose
transmission necessarily requires the use of syntax. This is good news for the practical
application of LSA to many kinds of discourse processing research, but is counter-intuitive
and at odds with the usual assumptions of linguistic and psycholinguistic theories of
meaning and comprehension, so it should be viewed with caution until further research is
done (and, of course, with reservations until the details of the studies have been
published.)
LSA and Text Comprehension
This application of LSA is described in papers in this volume, so we will mention the
results only briefly to round out our survey of evidence regarding the quality of LSA’s
simulation of human meaning-based performance. Kintsch and his colleagues (e.g. van
Dijk & Kintsch, 1983; Kintsch & Vipond, 1979; McNamara, Kintsch, Songer & Kintsch,
1996) have developed methods for representing text in a propositional language and have
used it to analyze the coherence of discourse. They have shown that the comprehension of
text depends heavily on its coherence, as measured by the overlap between the arguments
in propositions. In a typical propositional calculation of coherence, a text must first be
Introduction to Latent Semantic Analysis 32
propositionalized by hand. This has limited research to small samples of text and has
inhibited its practical application to composition and instruction. Foltz, Kintsch, and
Landauer (1993, this issue; Foltz, 1996) have applied LSA to the task. LSA can make
automatic coherence judgments by computing the cosine from one sentence or passage and
the following one. In one case, analysis of the coherence between a set of sentences about
the heart, the LSA measure predicted comprehension scores extremely well,  = .93. As will
be discussed in the article in this volume, the general approach of using LSA for computing
textual coherence also permits an automatic characterization of places in a text where the
coherence breaks down, as well as a measure of how semantic content changes across a
text.
Predicting learning from text
As reported in some detail in two of the succeeding articles in this issue, Kintsch, Landauer
and colleagues (Rehder et al.; Wolfe et al.; this issue) have begun to use LSA to match
students with text at the optimal level of conceptual complexity for learning. Earlier work
by Kintsch and his collaborators (see Kintsch, 1994; McNamara, Kintsch, Butler-Songer
and Kintsch, 1996 ) has shown that people learn the most when the text on a topic is
neither too hard, containing too many concepts with which a student is not yet familiar, nor
too easy, requiring too little new knowledge construction (a phenomenon we call “the
Goldilocks principle”). LSA has been used to characterize both the knowledge of an
individual student before and after reading a particular text and the knowledge conveyed by
that text. These studies and their results are described in detail in articles hereafter. It is
shown that choosing between instructional texts of differing sophistication by the LSA
relation between a short student essay and the text can significantly increase the amount
learned. In addition, analytic methods are developed by which not only the similarity
between two or more texts, but their relative positions along some important underlying
Introduction to Latent Semantic Analysis 33
conceptual continuum, such as level of sophistication or relevance to a particular topic, can
be measured.
Summary and some caveats
It is clear enough from the conjunction of all these formal and informal results that LSA is
able to capture and represent significant components of the lexical and passage meanings
evinced in judgment and behavior by humans. The following papers exploit this ability in
interesting and potentially useful ways that simultaneously provide additional
demonstrations and tests of the method and its underlying theory. However, as mentioned
briefly above, it is obvious that LSA lacks important cognitive abilities that humans use to
construct and apply knowledge from experience, in particular the ability to use detailed and
complex order information such as that expressed by syntax and used in logic. It also
lacks, of course, a great deal of the important raw experience, both linguistic and
otherwise, on which human knowledge is based. While we are impressed by LSA’s
current power to mimic aspects of lexical semantics and psycholinguistic phenomena, we
believe that its validity as a model or measure of human cognitive processes or their
products should not be oversold. When applied in detail to individual cases of word pair
relations or sentential meaning construal it often goes awry when compared to our
intuitions. In general, it performs best when used to simulate average results over many
cases, suggesting either that, so far at least, it is capturing statistical regularities that emerge
from detailed processes rather than the detailed processes themselves, or that the corpora
and, perhaps, the analysis methods, used to date have been imperfect.
On the other hand, the success of LSA as a theory of human knowledge acquisition
and representation should also not be underestimated. It is hard to imagine that LSA could
have simulated the impressive range of meaning-based human cognitive phenomena that it
has unless it is doing something analogous to what humans do. No previous theory in
linguistics, psychology or artificial intelligence research has ever been able to provide a
Introduction to Latent Semantic Analysis 34
rigorous computational simulation that takes in the very same data from which humans
learn about words and passages and produces a representation that gives veridical
simulations of a wide range of human judgments and behavior. While it seems highly
doubtful that the human brain uses the same mathematical algorithms as LSA/SVD, it
seems almost certain that the brain uses as much analytic power as LSA to transform its
temporally local experiences into global knowledge. The present theory clearly does not
account for all aspects of knowledge and cognition, but it offers a potential path for
development of new accounts of mind that can be stated in mathematical terms rather than
imprecise mentalistic primitives and whose empirical implications can be derived
analytically or by computations on bodies of representative data rather than by verbal
argument.
In future research we hope to see both improvements in LSA’s experience base
from analysis of larger and more representative corpora of both text and spoken language—
and perhaps, if a way can be found, by adding representations of experience of other
kinds—and the provision of a compatible process model of online discourse
comprehension by which both its input of experience and its application of constructed
knowledge will better reflect the complex ways in which humans combine word meanings
dynamically. As suggested above, one promising approach to the latter goal is to combine
LSA word and episode representation with the Construction-Integration theory’s
mechanisms for discourse comprehension, a strategy that Walter Kintsch illustrates in a
forthcoming book (Kintsch, in press.) Other avenues of potential improvement involve the
representation of word order in the input data for LSA, following the example of the work
reported in Burgess and Lund (this volume).
Meanwhile, it needs keeping in mind that the applications of LSA recounted in the
following articles are all based on its current formulation and based on varying training
corpora that are all smaller and less representative of relevant human experience than one
would wish. Part of the problem of non-optimal corpora is due simply to the current
Introduction to Latent Semantic Analysis 35
unavailability and difficulty of constructing large general or topically relevant text samples
that approximate what a variety of individual learners would have met. But another is due
to current computational limitations. LSA became practical only when computational
power and algorithm efficiency improved sufficiently to support SVD of thousands of
words-by-thousands of contexts matrices; it is still impossible to perform SVD on the
hundreds of thousands by tens of millions matrices that would be needed to truly represent
the sum of an adult’s language exposure. It also needs noting that is still early days for
LSA and that many details of its implementation, such as the preprocessing data
transformation used and the method for choosing dimensionality, even the underlying
statistical model, will undoubtedly undergo changes.
Thus in reading the following articles, or in considering the application of LSA to
other problems, one should not think of LSA as a fixed mechanism or its representations as
fixed quantities, but rather, as evolving approximations.
Introduction to Latent Semantic Analysis 36
REFERENCES
Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.
Anglin, J. M. (1970) The growth of word meaning. Cambridge, MA.: MIT Press.
Anglin, J. M., Alexander, T. M., & Johnson, C. J. (1996). Word learning and the
growth of potentially knowable vocabulary. Submitted for publication.
Berry, M. W. (1992). Large scale singular value computations. International Journal
of Supercomputer Applications ,  , 13-49.
Berry, M. W., Dumais, S. T. and O'Brien, G.W. (1995) Using linear algebra for
intelligent information retrieval. SIAM: Review, 37, 573-595.
Britton, B. K. & Sorrells, R. C. (1998/this issue). Thinking about knowledge
learned from instruction and experience: Two tests of a connectionist model. Discourse
Processes , 2 , 131-177.
Burgess, C., Livesay, K. & Lund, K. (1998/this issue). Explorations in context
space: Words, sentences, discourse. Discourse Processes , 2 , 211-257.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.
(1990). Indexing By Latent Semantic Analysis. Journal of the American Society For
Information Science , 4 , 391-407.
Dumais, S. T. (1994). Latent semantic indexing (LSI) and TREC-2. In D. Harman
(Ed.), The Second Text Retrieval Conference (TREC2) (National Institute of Standards and
Technology Special Publication 500-215, pp. 105-116).
Dumais, S. T. & Nielsen, J. (1992). Automating the assignment of submitted
manuscripts to reviewers. In N. Belkin, P. Ingwesen, & A. M. Pejtersen (Eds.)
Proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. New York, Association for Computing
Machinery.
Introduction to Latent Semantic Analysis 37
Foltz, P. W. (1996) Latent Semantic Analysis for text-based research. Behavior
Research Methods,Instruments and Computers. 28, 197-202.
Foltz, P. W., Britt, M. A., & Perfetti, C. A. (1996) Reasoning from multiple texts:
An automatic analysis of readers' situation models. In G. Cottrell (Ed.) Proceedings of the
18thAnnual Cognitive Science Conference. Hillsdale, NJ: Lawrence Erlbaum Associates.
Foltz, P. W. & Dumais, S. T. (1992). Personalized information delivery: An
analysis of information filtering methods. Communications of the ACM,35, 51-60.
Foltz, P. W., Kintsch, W., & Landauer, T. K. (1993, July). An analysis of textual
coherence using Latent Semantic Indexing. Paper presented at the meeting of the Society
for Text and Discourse, Boulder, CO.
Harman, D. (1986). An experimental study of the factors important in document
ranking. In Association for Computing Machinery Conference on Research and
Development in Information Retrieval. Association for Computing Machinery.
Kintsch, W. (1988) The role of knowledge in discourse comprehension
construction-integration model. Psychological Review, 163-182.
Kintsch, W. (1994) Text comprehension, memory, and learning. American
Psychologist, 49, 294-303.
Kintsch, W. (1998) Comprehension: A paradigm for cognition. New York:
Cambridge University Press.
Kintsch, W., & Vipond, D. (1979). Reading comprehension and readability in
educational practice and psychological theory. In L. G. Nilsson (Eds.), Perspectives on
Memory Research. Hillsdale, NJ: Erlbaum.
Laham, D. (1997a). Automated holistic scoring of the quality of content in directed
student essays using Latent Semantic Analysis . Unpublished master’s thesis, University of
Colorado, Boulder.
Introduction to Latent Semantic Analysis 38
Laham, D. (1997b). Latent Semantic Analysis Approaches to Categorization. In M.
G. Shafto & P. Langley (Eds.), Proceedings of the 19th Annual Conference of the
Cognitive Science Society (p. 979). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Landauer, T.K. and Dumais, S.T. (1994). Latent semantic analysis and the
measurement of knowledge. In R. M. Kaplan and J. C. Burstein (Eds) Educational Testing
Service Conference on Natural Language Processing Techniques and Technology in
Assessment and Education. Princeton, Educational Testing Service.
Landauer, T. K., & Dumais, S. T. (1996). How come you know so much? From
practical problems to new memory theory. In D. J. Hermann, C. McEvoy, C. Hertzog, P.
Hertel, & M. K. Johnson (Eds.), Basic and applied memory research: Vol. 1. Theory in
context(pp. 105-126). Mahwah, N.J.: Lawrence Erlbaum Associates, Inc.
Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato's problem: The Latent
Semanctic Analysis theory of the acquisition, induction, and representation of knowledge.
Psychological Review , 10 , 211-140
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Latent Semantic Analysis passes
the test: knowledge representation and multiple-choice testing. Unpublished manuscript.
Landauer, T. K., Laham, D., & Foltz, P. W. (1998  . Computer-based grading of the
conceptual content of essays . Unpublished manuscript.
Landauer, T. K., Laham, D., Rehder, B., & Schreiner, M. E., (1997). How well can
passage meaning be derived without using word order? A comparison of Latent Semantic
Analysis and humans. In M. G. Shafto & P. Langley (Eds.), Proceedings of the 19th
annual meeting of the Cognitive Science Society (pp. 412-417). Mawhwah, NJ: Erlbaum.
Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments and Computers , 2 , 203-
208.
Introduction to Latent Semantic Analysis 39
McNamara, D. S., Kintsch, E., Songer B. N., & Kintsch, W. (1996) Are good texts
always better? Interactions of text coherence, background knowledge, and levels of
understanding in learning from text. Cognition and Instruction , 1 , 1, 1-43.
Rehder, B., Schreiner, M. E., Wolfe, B. W., Laham, D., Landauer, T. K., &
Kintsch, W. (1998/this issue). Using Latent Semantic Analysis to assess knowledge:
Some technical considerations. Discourse Processes , 2 , 337-354.
Steinhart, D. J. (1996). Resolving Lexical ambiguity: Does context play a role?
Unpublished master’s thesis, University of Colorado, Boulder.
Till, R. E. , Mross, E. F., & Kintsch, W. (1988). Time course of priming for
associate and inference words in discourse context. Memory and Cognition, 1 , 283-298.
van Dijk, T. A., & Kintsch, W. (1983). Strategies of Discourse Comprehension.
New York: Academic Press.
Wolfe, M. B., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch,
W., & Landauer, T. K. (1998/this issue). Learning from text: Matching readers and text
by Latent Semantic Analysis. Discourse Processes , 2 , 309-336.
Zeno, S. M., Ivens, S. H., Millard, R. T., & Duvvuri, R. (1995). The educator’s
word frequency guide . Brewster, NY: Touchstone Applied Science Associates.
Introduction to Latent Semantic Analysis 40
Appendix
The latest information and applications of LSA can be found at our website:
http://LSA.colorado.edu/
This website is organized into three content areas, Information,
Demonstrations, and Applications. The Information section contains additional papers,
links, and other pertinent information on LSA.
The Demonstrations section currently includes examples of essay scoring and
matching learners to text. The matching application allows you to explore the use of LSA
as a tool for selecting texts that will augment learning. The demonstration shows how LSA
might be used to select a text about the heart based on the knowledge demonstrated in a
short essay. The returned text should be understandable to the reader as well as help him or
her learn something new.
The Applications section permits you to select an available LSA semantic space and
run some comparison experiments on text you provide. Each application consists of a form
where you are to include the text(s) that you want to make LSA comparisons with (as well
as a number of options). After you submit the form, the LSA programs will make the
desired comparisons and return the results to a new web page. You can save the results
using your browser's Save Frame menu.
Introduction to Latent Semantic Analysis 41
Author Note
Darrell Laham and Thomas K Landauer, Department of Psychology, University of
Colorado, Boulder. Peter W. Foltz, Department of Psychology, New Mexico State
University.
This research was supported in part by a contract from ARPA-CAETI to T.
Landauer and W. Kintsch.
Correspondence concerning this article should be addressed to Thomas K
Landauer, Department of Psychology, Campus Box 345, University of Colorado,
Boulder, CO, 80309. Electronic mail may be sent via Internet to
landauer@psych.colorado.edu.
Landauer, T. K., Foltz, P. W., & Laham, D. (1998).
Introduction to Latent Semantic Analysis.
Discourse Processes, 25, 259-284.

Thứ Hai, 17 tháng 10, 2016

IELTS NGOC BACH Bai 1

IELTS NGOC BACH
TỰ HỌC SỬA LỖI SAI TỪ VỰNG & NGỮ PHÁP  BÀI SỐ 1
Một trong những dự án mới của mình để giúp các bạn khắc phục được các lỗi ngữ pháp từ vựng
thường gặp khi viết bài IELTS Writing, đặc biệt là phần Task 2.
Mình sẽ lần lượt lấy các bài các bạn học sinh viết, sau đó chỉ ra các lỗi sai và đưa ra giải thích
chi tiết (kèm trích nguồn từ điển, nếu chỉ gạch từ hoặc lỗi của các bạn mà không giải thích ->
rất nhiều bạn sẽ thấy khó hiểu). Các bạn sẽ thấy đọc những phần sửa này cực kỳ bổ ích và có
thêm được rất nhiều kiến thức. Các phần sửa này trước khi public đến mọi người sẽ được review
bởi các giám khảo IELTS đang hợp tác làm việc cùng mình (qua các dự án sách speaking,
writing…)
Các bạn hãy đọc kỹ từng bài sửa, lưu ý kỹ các lỗi sai mình giải thích và nhớ đọc thêm phần từ
điển mình trích dẫn để hiểu hơn. Nhớ rằng học tiếng anh là một quá trình tích lũy lâu dài, bền
bỉ, không thể một sớm một chiều mà bạn trở thành người viết không sai lỗi ngữ pháp được đâu.
Hãy kiên nhẫn, rút kinh nghiệm và ghi nhớ từng lỗi sai, quan sát cách người bản xứ diễn đạt
như thế nào -> dần dần bạn sẽ viết tốt và không sai lỗi .
Tài liệu này dự kiến sẽ được public cho cả các bạn sinh viên nước ngoài nên phần giải thích viết
bằng tiếng Anh là chính.
Tuy nhiên, mình cũng đã nhờ 1 bạn học sinh band 8.0 IELTS dịch lại cho các bạn và giải thích
thêm cho dễ hiểu (Các bạn trình độ tốt có thể chỉ cần đọc phần viết tiếng Anh)
Chúc các bạn học tốt
-Ngọc Bách-
07-02-2015
Many museums and historical sites are mainly visited by tourists but not local people. Why is
this the case and what can be done to attract more local people to visit these places?
It is true that tourists from many parts of the world pay more visits to museums and historical places
than local inhabitants. Resulting from a number of reasons, this situation should be solved by attracting
the locals in some practical ways.
There are two main reasons why museums and historical sites are preferred more by tourists than by
local residents. One reason is that museums are too familiar with to (1)nearby inhabitants. If museums
do not change anything, there will be nothing new for the locals to discover. Like eating the same dish
every single day, they feel bored with visiting the same places. Furthermore, entrance tickets at some
historical sites are expensive for the local inhabitants to afford. For example, in Dien Bien, a province
in northwestern Vietnam, it is rather hard for the residents to make ends meet, let alone to spend
money on visiting some famous historical relics/attractions (2) there.
The governments should take some measurements (3) to tackle this issue effectively. Firstly, museums
are supposed ought to be (4) invested in more by the authorities to refresh the exhibits (5). The fresher
the museums are, the more local residents are interested in them. Secondly, historical relics had better
need to be (6) free for all the local people. Without worrying about an (7) additional expenditure, those
residents will pay more and more visits to historical heritages (8) in order to broaden their knowledge
about their home towns.
In conclusion, there are some evident reasons that bring about this trend. However, something should
be done to attract more visits of the locals by the authorities (9).
254 words
PHÂN TÍCH
LỖI SAI TỪ VỰNG & NGỮ PHÁP
1. We are ‘familiar with something’, but ‘something is familiar to’ us. This is the general
rule, but these example sentences may be helpful:
http://www.oxfordlearnersdictionaries.com/definition/english/familiar?q=familiar
-  S + be familiar with sth/sb: ai đó thân thuộc, quen thuộc với cái gì/ai.
-  S + be familiar to sth/ sb: cái gì đó trở nên quen thuộc với ai
-  Có thể thấy sự khác biệt trong câu sau:
I'm not familiar WITH him, but his face seems familiar TO me.
(Tôi không quen anh ấy nhưng mặt anh ất trông rất quen)
2. This is not a mistake, but in normal English usage we think of a ‘relic’ as an ancient
object, rather than a historical site or building. This is why I have suggested an
alternative word.
http://www.oxfordlearnersdictionaries.com/definition/english/relic?q=relic
Cách sử dụng từ “relic” không sai, nhưng thông thường, “relic” được dùng để chỉ một
thứ đồ cổ, hoặc phần tàn dư, hơn là một di tích hay tòa nhà cổ hoặc các điểm tham
quan lịch sử. Nên sử dụng một từ khác thay thế phù hợp hơn. Ví dụ: attractions.
3. You mean ‘measures/steps’. I think that you know that measurements are things like
centimetres, kilograms.....
-  Measures: Giải pháp giải quyết vấn đề. Đồng nghĩa với steps.
Được sử dụng trong “take measures”
Ví dụ: They took measures to improve their performance.
https://en.oxforddictionaries.com/definition/take_measures
-  Measurement: Sự đo lường. Được sử dụng khi nói tới đo lường độ dài, cân nặng…
Ví dụ: Please take some measurements of the temperature
4. Use ‘need to/must/ought to/should’ to make recommendations . ‘Supposed to’ is used
in a different context:
http://www.oxfordlearnersdictionaries.com/definition/english/suppose#suppose__253
-  Để đưa ra các gợi ý, thường sử dụng động từ khiếm khuyết (modal verbs) như need
to/ must/ ought to/ should
-  “Be supposed to” được sử dụng với ý nghĩa khác
+ nghĩa tường thuật (tương tự it is said that, S + be said to, một số từ tường thuật
khác như be thought to, be reported to, be expected to,…)
Ví dụ: "He's supposed to have kicked a policeman." (He is said to have kicked a
policeman)
+ chỉ một việc được dự định, mong chờ là sẽ xảy ra, hoặc nhiệm vụ ai đó phải làm,
nhưng thực tế diễn ra không được như vậy.
Ví dụ: The train was supposed to arrive at 11.30 but it was an hour late.
-  Nguồn: https://www.hellochao.vn/ngu-phap-tieng-anh/cach-dung-cau-truc-it-is-
said-that-he-is-said-to-va-be-supposed-
to/?aid=e4da0b7fbbce23451~781b0674a355MO
-  Tham khảo cách dùng suppose tại đây
http://www.oxfordlearnersdictionaries.com/definition/english/suppose#suppose__2
53
5. We refresh ‘something’ or ‘somebody’:
http://www.oxfordlearnersdictionaries.com/definition/english/refresh?q=refresh See
also: http://www.oxfordlearnersdictionaries.com/definition/english/exhibit_2
6. The idea of ‘had better be’ is useful in other contexts, but not here: see Idioms in this
reference -
http://www.oxfordlearnersdictionaries.com/definition/english/better_2#better_2__128
“Had better” được sử dụng khi bạn nghĩ rằng ai đó nên làm gì, mang tính chất cá nhân,
hoặc khuyên bảo, hoặc cảnh báo, không phù hợp cho những tình huống tổng quát, giải
quyết một vấn đề xã hội liên quan đến “historical attractions”.
Có thể tham khảo cách sử dụng “had better” tại đây
http://www.oxfordlearnersdictionaries.com/definition/english/better_2#better_2__128
Hoặc: http://hoctienganh.info/su-dung-cau-truc-had-better-sao-cho-dung/
7. ‘Expenditure’ is an uncountable noun, so delete ‘an’.
8. ‘Heritage’ is another uncountable noun, so it has no plural form. Use ‘historical sites’.
Expediture và Heritage là những danh từ không đếm được, không sử dụng mạo từ a/an
ở trước hoặc sử dụng dạng số nhiều.
Một số danh từ không đếm được (uncountable noun) thông dụng khác:
Accommodation, Furniture, Scenery, Advice, Information, Baggage, Luggage,
Behavior, Progress,…
Một số danh từ không đếm được, dạng số ít có “s” ở đuôi dễ gây nhầm lẫn: News,
Chaos, Measles, Economics, Mathematics, Politics,…
9. Word order: I suggest – ‘However, something should be done by the authorities to
attract more local visitors’.
Khi viết câu cần lưu ý vấn đề trật tự từ (word order). Trật tự từ là một vấn đề ngữ
pháp, và trật từ tự đúng giúp câu diễn đạt tự nhiên hơn, đặc biệt trong câu bị động.
Trong câu trên, chủ thể của hành động cần đi ngay sau động từ, hơn là mục đích của
hành động.
Ngoài ra, về vấn đề trật tự từ còn một số lưu ý khác
+ Động từ và bổ ngữ của động từ thường đi liền với nhau
+ Các trạng từ chỉ tần suất đứng trước động từ thường, sau động từ to be
+ Trong câu bị động: Trạng từ thời gian + by + O + trạng từ nơi chốn
+ ….
10. Một số hiện tượng ngữ pháp cần chú ý trong bài
-  Sử dụng phân từ độc lập: Resulting from a number of reasons, this situation should
be solved by attracting the locals in some practical ways. (“Resulting” được sử
dụng dưới dạng V_ing)
+ Khi 2 câu có cùng chủ ngữ, ta có thể rút gọn thành 1 bằng cách sử dụng phân từ
độc lập, dạng V_ing (mang tính chủ động) hoặc Phân từ 2 (bị động). Ví dụ:
+ Entering the room, he saw them kissing each other.
+ Written in 2000, his novel was the best-seller at that time.
Nguồn: http://tuanmta.com/ab/2015/04/kho-cau-truc-tuyet-doi-absolute-
phraseclause/
-  Câu so sánh kép: The fresher the museums are, the more local residents are
interested in them.
+ Cùng một tính từ, trạng từ:
S + V + adv/adj + er and adv/adj + er. (tính từ ngắn)
S + V + more and more + adv/adj. (tính từ dài)
+ Hai tính từ, trạng từ khác nhau
The + comparative + S + V, the + Comparative + S + V.
(The + từ ở dạng so sánh hơn)
Trong câu so sánh kép, nếu túc từ là một danh từ thì ta đặt danh từ ấy ngay sau tính
từ so sánh.
Ví dụ: The more English vocabulary we know the better we speak.
BÀI TẬP CHO KỲ SAU:
Đây là bài viết (cho đề task 2 ngày 08/10/16) sẽ được sử dụng làm tài liệu phân tích ở kỳ tới.
Các bạn hãy thử nhìn vào 18 lỗi sai trong bài mình đã bôi và viêt màu xanh gợi ý phần sửa.
Thử nghĩ xem các bạn có biết là tại sao phần mình bôi vàng lại sai ? Và tại sao cần sửa như
phần chữ màu xanh không ?
Các bạn có thể in tài liệu này ra và tự điền câu trả lời phía dưới. Các bạn có thể tra sách ngữ
pháp , google, tử điển collocation, oxford để tìm đáp án.
Phần trả lời giải thích chi tiết (tầm 5-7 trang) sẽ được post ở page
https://www.facebook.com/tuhocIelts8.0/ trong thời gian tới. Hy vọng là mình có đủ thời gian
để duy trì dự án này mỗi tuần post 1 bài vào tối t6 hàng tuần.
Các bạn đón xem và nhớ like & share ủng hộ để tác giả là mình có thêm động lực viết bài nhé
^^
Chúc các bạn học tốt !
-Ngọc Bách-

Thứ Tư, 10 tháng 8, 2016

Answer For Question IELTS 4 - Task 2

Question: Compare the advantages and disadvantages of three of the following as
media for communicating information. State which you consider to be the
most effective.
• comics
• books
• radio
• television
• film
• theatre
Give reasons for your answer and include any relevant examples from your own knowledge
or experience.
Answer:


Answer For Question IELTS 4 - Task 2

Question: Compare the advantages and disadvantages of three of the following as
media for communicating information. State which you consider to be the
most effective.
• comics
• books
• radio
• television
• film
• theatre
Give reasons for your answer and include any relevant examples from your own knowledge
or experience.
Answer: